Mechanisms of seizures and coma in hypoglycemia. Evidence for a direct effect of insulin on electrolyte transport in brain.

نویسندگان

  • A I Arieff
  • T Doerner
  • H Zelig
  • S G Massry
چکیده

The mechanisms involved in the production of hypoglycemic coma were studied in rabbits. Measurements were made in brain, cerebrospinal fluid (CSF), and plasma of osmolality, Na(+), K(+), Cl(-), water content, exogenous insulin, glucose, lactate, and glutamate, while pH, Pco(2), Po(2), and bicarbonate were evaluated in arterial blood, 35 min after i.v. injection of insulin (50 U/kg), plasma glucose did not change, but brain K(+) content increased significantly. Grand mal seizures were observed in unanesthetized animals (+/-SD) 133+/-37 min after administration of insulin, at a time when brain glucose was normal, but brain tissue content of Na(+), K(+), osmoles, and water was significantly greater than normal. Coma supervened 212+/-54 min after insulin injection, at which time brain glucose, lactate, and glutamate were significantly decreased. At both 35 and 146 min after insulin administration, exogenous insulin was present in brain, but not in the CSF. After 208 min of insulin administration, animals were given i.v. glucose and sacrificed 35 min later. Most changes in the brain produced by hypoglycemia were reversed by the administration of glucose. Hypoxia (Po(2) = 23 mm Hg) was produced and maintained for 35 min in another group of animals. Hypoxia caused brain edema but did not affect brain electrolyte content. However, brain lactate concentration was significantly greater than normal. The data indicate that the seizures noted early in the course of insulin-induced hypoglycemia are temporally related to a rise in brain osmolality secondary to an increased net transport into brain of Na(+) and K(+), probably caused by insulin, per se. As hypoglycemia persists, there is also depletion of energy-supplying substrates (glucose, lactate, glutamate) in the brain, an event which coincides with the onset of coma. The brain edema observed during hypoxia is largely due to an increase in brain osmolality secondary to accumulation of lactate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of epileptic seizures by electrical low frequency deep brain stimulation: A review of probable mechanisms

Epilepsy is the most common neurological disease with no definitive method in treatment. Notably, the main way to treat and control epileptic seizures is drug therapy. However, about 20-30% of patients with epilepsy are drug resistant and require other therapeutic manners. Deep brain stimulation is a new therapeutic strategy for these patients. Conspicuously, there are no clear answers for basi...

متن کامل

معرفی یک مورد بیمار انسولینوما با تشدید وقوع تشنج‌های قبلی

Insulinoma is an insulin-producing tumor that leads to hypoglycemia. The signs and symptoms of this disease include confusion, headache, disorientation, visual disturbances, abnormal behaviors and coma. In this article, we report a case of insulinoma presented with increased frequency of pervious tonic clonic seizures from 2 weeks before admission.

متن کامل

Refractory Seizures in Tramadol Poisoning: A Case Report

Background: Tramadol, an analgesic drug abused by opioid addicts, is also abused accidentally or for suicidal purposes. Tramadol poisoning can induce CNS depression, seizures, coma, and ultimately death. Case: In this report, a 30-year-old male was admitted to the emergency department due to suicidal attempt with ingestion of 14000 mg (140 tablet 100 mg) of tramadol. He had history of suicidal...

متن کامل

Hypoxic-ischemic encephalopathy in a young man due to tramadol overdose

Objective: Tramadol is a synthetic analgesic with two mechanisms. The opioid and non-opioid mechanisms are responsible for tramadol side effects. Non-opioid side effects of tramadol are due to the reuptake inhibitions of serotonin and norepinephrine. Some of the side effects include anaphylactoid reactions, CNS depression, hypoglycemia, hypotension, respiratory depression, seizures, and seroton...

متن کامل

The impact of COVID-19 during pregnancy on fetal brain development

The development of the brain as the most complex structure of the human body is a long process that begins in the third week of pregnancy and continues until adulthood and even until the end of life (1). Human brain myelination begins one to two months before birth in the visual system and eventually lasts until the age of two in other sensory systems and then the motor systems (4). Processes a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 54 3  شماره 

صفحات  -

تاریخ انتشار 1974